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Abstract
We carry out a complete study on the relationship between Cox processes driven
by interacting Feller diffusions and death sequences of immigration–emigration
linked population networks. It is first proved that the Cox process driven by a
Feller diffusion is equivalent to the death sequence of a birth and death process.
The conclusion is then generalized to the case of Cox processes driven by
interacting Feller diffusions and death sequences of interacting populations.

PACS numbers: 02.50.Ga, 87.18.Su

1. Introduction

Let Y (t) be the Markovian population process (see [2, 7, 16, 18] or section 2 for an exact
definition) with constants ν, λ,µ as the rates of immigration, birth and death. For the process
Y (t), assume that we are able to observe the total number of deaths D(t) (death sequence) in
[0, t] for t > 0 (see figure 1).

On the other hand, we take into account a Cox process C(t) (see figure 2 and section 2
for an exact definition) with a rate defined by

dZ(t) = p
√

Z(t) dBt + (qZ(t) + r) dt

where Bt is the standard Brownian motion, p, q, r are appropriate constants, i.e. Z(t) is the
Feller diffusion. Without a noise term, we see that the stable state of Z(t) is −r/q . Hence
Z(t) is the process which describes the fluctuations around −r/q . To ensure that

√
Z(t) is

properly defined, it is required that −r/q > 0.
Establishing a relationship between a discrete process, say Y (t), and a continuous process,

say Z(t), is a long-term endeavour in probability theory. Usually, it is easy to deal with a
continuous process due to the powerful tools developed in stochastic analysis, but the discrete
process might give us a more clearly defined physical meaning. Certainly, the two processes
Y (t) and Z(t) are substantially different: the former is a discrete process and will by no means
converge to a continuous process, comparing figure 1 with figure 2. As a consequence, one
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Figure 1. Schematic plot of the process Y(t) starting with Y(0) = k. Thick, vertical lines indicate
the death sequence of Y(t). The observable events are the death sequence, as indicated by × on
the time axis. In the figure we have D(t) = 4.

Time

Z(
t)

0 t 
o o  o                   o 
t
1
   t

2
  t

3
                   t

4
 

Figure 2. A Feller process Z(t) starting with Z(0) = 1 and p = 0.1, q = −1, r = 1(line). The
observable events (Cox process) are the process with intensity Z(t), as indicated by o on the time
axis. In the figure we have C(t) = 4.

might thus conclude that the two point processes D(t) and C(t) are not relevant at all. However,
we show that by appropriately choosing the parameters (p, q, r) in the Feller process, the two
processes D(t) and C(t) are equivalent.

Our motivation to establish the relationship between D(t) and C(t) is from neuroscience.
Traditionally and as a first-order approximation, it is accepted in neuroscience that each neuron
sends and receives signals taking the form of a Poisson process [8, 9, 23]. However, due to
the large noise presented in the brain, it is natural to use the Cox process (see, for example,
[1, 15]) rather than the Poisson process to fit experimental data. Recently, the approach has
been found to be quite promising [1, 15]. One of the bottlenecks to applying the theory of Cox
processes to experimental data lies in the fact that it is much harder to estimate parameters
in the Cox process, in comparison with the Poisson process where only one parameter (the
firing intensity) is needed to estimate. It is found that directly calculating the maximum
likelihood function of the Cox process is very time consuming [5, 6, 11–14]. On the other
hand, computationally it is much more efficient to calculate the maximum likelihood function
of D(t), albeit its form is still complex [4]. According to the theory developed in this paper,
we assert that the aforementioned estimations based upon D(t) and C(t) are identical. We
will report the estimation of parameters in the Cox process using experimental data in future
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publications [4] and in the present paper we concentrate on the establishment of the equivalent
relationship between the two processes C(t) and D(t).

One might naturally ask whether our conclusions are true for more general situations.
Consider a sequence of coupled birth and death processes: the death process of a current
population is actually to emigrate from the population and immigrate to the next population.
Are there corresponding Cox processes driven by Feller diffusions so that the final outcomes
(the observable variables) of two classes of processes are equivalent? We prove that it is the
case and the corresponding Cox processes are exactly given.

In summary, we prove the equivalent relationship of two classes of point processes which
are generated by seemingly unrelated processes. The equivalent relationship enables us to
gain some further insights into the statistics of the processes and to develop novel algorithms
to estimate various model parameters. For the application of our theory to other areas, we
refer the reader to [19–22].

The paper is organized as follows. In section 2, we first prove the equivalence between
the death sequence of Y (t) and a Cox process driven by a Feller diffusion. The main tool we
employ is the probability generating functional (see the next section for an exact definition). In
section 3, the interacting birth and death networks are considered and the equivalence between
the outcomes of birth and death networks and Cox processes driven by interacting Feller
processes are established. In appendices A and B, we show how to calculate various functions
of the processes using the probability generating functional. The application of current theory
to experimental data from neuroscience will be reported in a separate publication [4].

2. Equivalence between a single death sequence and a Cox process

Y (t) is defined as a Markov chain taking values in {0, 1, 2, . . .} with the infinitesimal transition
probabilities

P(Y (t + h) = n + m|Y (t) = n) =



λnh + o(h) if m = 1
µnh + o(h) if m = −1
o(h) if |m| > 1

where h > 0, λn = nλ + ν and µn = nµ.
A Cox process (or doubly stochastic Poisson process) C(t) is a nonhomogeneous Poisson

process with the rate function itself being a random process. In our considerations, the rate
function is given by the Feller diffusion Z(t).

The basic tool we employ to tackle the problem is the probability generating functional
(pgf). Let G be the set of all non-negative and measurable functions bounded by 1, and 1 − ξ

has finite support, i.e. ξ(t) = 1 when t is large enough.

Definition 1. The pgf of a one-dimensional counting process N(t) is

G(ξ) = E

(∏
i

ξ(ti )

)
(2.1)

= E
{

exp

[∫ ∞

0
log ξ(u) dN(u)

]}
(2.2)

where {ti, i = 1, 2, . . .} are the times when the points are counted (see, for example, figures 1
and 2) and ξ ∈ G.

If two point processes X(t) and Y (t) have identical pgfs, then the two processes are
identical in distribution (see appendix B for details).
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For concreteness of notation, we sometimes denote IBD(ν, λ, µ) = Y (t). For a birth and
death process Y (t), we sometimes denote D(Y(t)) is its death sequence; for a Feller diffusion
Z(t), C(Z(t)) is its corresponding Poisson process with the rate Z(t).

2.1. The death sequence of IBD (ν, λ, µ)

By definition, given Y (0) = k, the pgf associated with D(t) = D(Y(t)) is

Gk(ξ) = E
{

exp

[∫ ∞

0
log ξ(u) dD(u)

] ∣∣∣∣Y (0) = k

}
.

Lemma 1. The pgf of the death sequence D(t) for the IBD (ν, λ, µ) process with initial
population size Y (0) = k is given by

Gk(ξ) = f k(0) exp

{
ν

∫ ∞

0
(f (t) − 1) dt

}
(2.3)

where f satisfies (the Ricatti equation)

f ′(t) − (λ + µ)f (t) + λf 2(t) = −µξ(t) t � 0 (2.4)

with the boundary condition f (t) = 1 for t � lim sup{u : 1 − ξ(u) > 0}.

Proof. Let X(t) be the population size in a simple birth and death process BD(λ, µ) and let
D(t) be the total number of deaths in [0, t].

We define the following conditional pgf,

f (t)
def= E

{
exp

[∫ ∞

0
log ξ(t + u) dD(u)

] ∣∣∣∣X(0) = 1

}
(2.5)

where ξ ∈ G. When there is no risk of ambiguity, for convenience, we always write f (t) for
f (t, ξ). Equivalently, by a simple time shift, this is the pgf of the death sequence generated
by a population process starting with a single individual at time t.

The time S of the first event, be it birth or death, is a random variable with density

g(s) = (λ + µ) exp[−(λ + µ)s] 0 � s < ∞. (2.6)

The process X(t) is strongly Markovian and the random time S is a stopping time. If the first
event is a death, the process dies out; if the first event is a birth, the process splits into two
independent processes, with each of them being stochastically equivalent to the original one
except that the time origin is S.

The probability ratio of whether the birth or the death occurs first is λ : µ. Hence the
functional f (t), as a function of t, satisfies the integral equation

f (t) =
∫ ∞

0
e−(λ+µ)s{λf 2(t + s) + µξ(t + s)} ds. (2.7)

We rewrite this as

f (t) =
∫ ∞

t

e−(λ+µ)s e(λ+µ)t[λf 2(s) + µξ(s)] ds

with the appropriate boundary condition. Hence, differentiating both sides of the equation
above with respect to t and rearranging terms, we have

f ′(t) − (λ + µ)f (t) + λf 2(t) = −µξ(t). (2.8)
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Now we turn to consider Y (t), the IBD(ν, λ, µ) process. Since the sequence of deaths
for this process is the superposition of the death sequences generated by new immigrants and
their descendants, the pgf starting with population size zero can be written as

G0(ξ) = E


∏

j

f (Tj )|Y (0) = 0


 (2.9)

where Tj is the time of the jth immigration.
Let D1(t) be the number of immigrations in (0, t), that is a Poisson process with rate ν,

then the well-known pgf of Poisson process leads to

G0(ξ) = E
{

exp

[∫ ∞

0
f (t) dD1(t)

] ∣∣∣∣Y (0) = 0

}
(2.10)

= exp

(∫ ∞

0
ν(f (t) − 1) dt

)
. (2.11)

Combining (2.5) and (2.11) we have

Gk(ξ) = E
{

exp

[∫ ∞

0
log ξ(u) dD(u)

] ∣∣∣∣Y (0) = k

}
(2.12)

= f k(0) exp

[
ν

∫ ∞

0
(f (t) − 1) dt

]
(2.13)

which completes the proof. �

2.2. Cox process driven by Feller diffusion

We consider the Poisson process with the Feller diffusion as its intensity. The intensity process
satisfies the stochastic differential equation

dZ(t) = p
√

Z(t) dBt + (qZt + r) dt (2.14)

where p2 = 2λµ, q = λ − µ, and r = µν. Let C(t) be the number of events in [0, t] and let

H(z, ξ) = E
{

exp

[∫ ∞

0
log ξ(t) dC(t)

] ∣∣∣∣Z(0) = z

}
denote the pgf of the point process, starting at Z(0) = z.

Lemma 2. The Poisson process with the Feller diffusion Z(t) as its intensity has pgf

H(z, ξ) = exp

{
(f (0) − 1)z/µ + ν

∫
(f (t) − 1) dt

}
(2.15)

where z is the initial value of Z(t) and f satisfies

f ′(t) − (λ + µ)f (t) + λf 2(t) = −µξ(t) (2.16)

with the boundary condition f (t) → 1 as t → ∞.

Proof. Since it is well known that the pgf of the Poisson(Z(t)) is

H(z, ξ) = E
[

E
[

exp

{∫ ∞

0
log ξ(t) dC(t)

} ∣∣∣∣Z(t), 0 � t < ∞
] ∣∣∣∣Z(0) = z

]

= E
[

exp

{∫ ∞

0
(1 − ξ(u)Z(u)) du

} ∣∣∣∣Z(0) = z

]
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we define

A(t) =
∫ t

0
(1 − ξ(u))Z(u) du (2.17)

so that the pgf associated with C(t) is given by

E
{

exp

[
−
∫ ∞

0
(1 − ξ(u))Z(u) du

] ∣∣∣∣Z(0) = z

}
= lim

t→∞ E(e−A(t)|Z(0) = z). (2.18)

Let

M(t) = exp{−A(t) + a(t)Z(t) + b(t)}. (2.19)

We intend to find functions a(t) and b(t) so that M(t) is a martingale. Writing

g(x, t) = exp{−A(t) + a(t)x + b(t)} (2.20)

we have 


∂g

∂x
= ga(t)

∂g

∂t
= g[−A′(t) + a′(t)x + b′(t)]

∂2g

∂x2
= ga2(t).

(2.21)

Hence, using Ito’s formula, the infinitesimal mean of M(t) has the following form,

µM(t) = g
[
a(t)µZ(t) + (−A′(t) + a′(t)Z(t) + b′(t)) + 1

2a2(t)σ 2
Z(t)

]
= g

[
a(t)(qZ(t) + r) − A′(t) + b′(t) + a′(t)Z(t) + 1

2a2(t)σ 2
Z(t)

]
= g

[
Z(t)

(
a(t)q + a′(t) + 1

2p2a2(t) − 1 + ξ(t)
)

+ b′(t) + a(t)r
]

where µZ(t) and σZ(t) are the drift and diffusion terms of Z(t) respectively.
We know that µM(t) = 0 is a sufficient condition to ensure that M(t) is a martingale.

This implies that a(t) and b(t) should satisfy the following differential equations:{
a′(t) + qa(t) + 1

2p2a2(t) − 1 = ξ(t)

b′(t) + a(t)r = 0.
(2.22)

Now define a(t) by

a(t) = − 1

µ
(1 − f (t)) (2.23)

so that

a′(t) = 1

µ
f ′(t) a2(t) = 1

µ2
(1 − 2f (t) + f 2(t)).

Putting all related terms into the left-hand side of (2.22) we get

a′(t) + qa(t) +
1

2
p2a2(t) − 1 = 1

µ
[f ′(t) − (λ + µ)f (t) + λf 2(t)]. (2.24)

Therefore equation (2.22) is identical to equation (2.8) or (2.16). Furthermore

M(t) = exp

{
−A(t) +

1

µ
(f (t) − 1)Z(t) − ν

∫ t

0
(f (u) − 1) du

}
(2.25)
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is an L2-martingale since 0 � M(t) � 1. Hence with the basic property of a martingale,
condition on Z(0) = z, we have

lim
t→∞ EM(t) = M(0)

= exp

{
z

µ
(f (0) − 1)

}
.

Also from the definition

lim
t→∞ EM(t) = lim

t→∞ E(e−A(t)) exp

[
−ν

∫ ∞

0
(f (t) − 1) dt

]
. (2.26)

Thus, together with equation (2.18), the pgf of the C(t) condition on Z(0) = z is

H(z, ξ) = lim
t→∞ E(e−A(t)|Z(0) = z) (2.27)

= exp

{
− z

µ
(1 − f (0)) − ν

∫ ∞

0
(1 − f (t)) dt

}
. (2.28)

which completes the proof. �

2.3. Equivalence between two processes D(t) and C(t)

We establish equivalent relationships between two processes D(t) and C(t) with different
initial distributions. From now on we always assume that µ > λ. The first equivalent
relationship is about the processes with stationary initial distributions.

Theorem 1. In equilibrium, the Cox process C(t) driven by Feller diffusion Z(t) (defined in
equation (2.14)) and the death time process D(t) of the IBD (ν, λ, µ) process are stochastically
equivalent, i.e. they are identical in distribution.

Proof. In equilibrium Z(0) has a gamma distribution with parameters (δ, β) so that

E(euZ(0)) = (1 − µβu)−δ (2.29)

where δ = ν/λ, and β = λ/(µ − λ). Taking expectations on both sides of equation (2.15) we
have the pgf of the Cox process in equilibrium,

H(ξ) =
(

1 + µβ
1

µ
(1 − f (0))

)−δ

exp

[
−ν

∫ ∞

0
(1 − f (t)) dt

]
(2.30)

=
(

µ − λ

µ − λf (0)

)δ

exp

[
−ν

∫ ∞

0
(1 − f (t)) dt

]
. (2.31)

Similarly, when the IBD process is in equilibrium Y (0) has a NegBin(c, δ) distribution
with

EuY(0) = [(1 − c)/(1 − cu)]δ

where c = λ/µ, δ = ν/λ. Again taking expectations in both sides of equation (2.3) we have

G(ξ) =
∞∑

k=0

πkGk(ξ)

=
[

1 − c

1 − cf (0)

]δ

exp

[
−ν

∫ ∞

0
(1 − f (t) dt

]

=
[

µ − λ

µ − λf (0)

]δ

exp

[
−ν

∫ ∞

0
(1 − f (t)) dt

]
. (2.32)
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Hence the two pgfs agree with each other. From the results in appendix B, we conclude
that D(t) and C(t) are identical in distribution. �

Next we consider two more special cases: Z(0) = 0 and Z(0) = z0 > 0, a constant.

Corollary 1. The death sequence D(t) of the IBD (ν, λ, µ) process with initial population
Y (0) = 0 is stochastically equivalent to the Cox process driven by Feller diffusion (2.14) with
initial intensity Z(0) = 0. The corresponding pgf is

G(ξ) = exp

[
−ν

∫ ∞

0
(1 − f (t)) dt

]
. (2.33)

Proof. This directly follows from equations (2.15) and (2.3). �

Corollary 2. The Cox process C(t) driven by Feller diffusion (2.14) conditioned on the initial
intensity Z(0) = z0 is stochastically equivalent to the death time process D(t) of the IBD
(ν, λ, µ) process with the initial population sampled from Poisson(z0/µ). The corresponding
pgf is equation (2.28).

Proof. When Y (0) is sampled from Poisson(z0/µ),

Ef (0)Y(0) = exp{−(1 − f (0))z0/µ} (2.34)

which implies that the pgf of D(t) with the random initial distribution is coincident with
equation (2.28). �

3. Equivalence between a population death sequence and a Cox process driven by
interacting Feller processes

In this section, we extend the results of the previous section to the point processes associated
with multi-population systems and interacting Feller diffusions. We start by showing that
the equivalent results in section 2 can be generalized to a nonhomogeneous birth and death
process with an immigration rate depending on time.

3.1. IBD(ν(t), λ, µ) process and generalized Feller diffusion

In section 2 we showed that the pgf of the death time sequence of the stable IBD(ν, λ, µ)

process takes the form

G(ξ) =
[

µ − λ

µ − λf (0)

]δ

exp

[
−
∫ ∞

0
ν(1 − f (t)) dt

]
(3.1)

where f is defined in equation (2.4). We note that the proofs of the equivalence results in
section 2 remain valid when we allow ν to depend on time as an a.s. continuous positive
function. We then conclude as follows.

Theorem 2. The sequence of death times D(t) for the IBD (ν(t), λ, µ) process is stochastically
equivalent to the Cox process C(t) driven by generalized Feller diffusion Z(t) defined by

dZ(t) = p
√

Z(t) dB(t) + (qZ(t) + r) dt (3.2)

with p2 = 2λµ, q = λ − µ, r = µν(t) and the initial population size Y (0) being distributed
as Poisson(Z0/µ). The corresponding pgf is

H(ξ) = exp

{
−Z0

µ
(1 − f (0)) −

∫ ∞

0
(1 − f (t))ν(t) dt

}
. (3.3)
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In particular, the result is true when the population and diffusion processes both start
from 0.

Proof. Here we will not repeat the proofs similar to those in section 2, instead we merely
mention two crucial facts. The first is that the function f does not depend on ν(t). The second
is that the exponential martingale becomes

M(t) = exp

[∫ t

0
(1 − ξ(u))Z(u) du +

Z(t)

µ
(f (t) − 1) −

∫ t

0
ν(u)(f (u) − 1) du

]
. (3.4)

The other arguments remain valid. �

Note that the equivalence depends on the particular relationship between the initial states
of the population process and the Feller diffusion. For brevity of the later arguments, we
formally introduce the following definition to describe such a relationship.

Definition 2. Suppose that MZ(u) is the moment generating function of a positive and
continuous random variable Z and mY (u) is the generating function of a discrete random Y. If

MZ(u) = mY (u + 1) for −2 � u � 0. (3.5)

then we say that Z and Y are compatible.

Lemma 3. The random variables Z(0)/µ and Y (0) are compatible if and only if Y (0)
dist=

Poisson(Z(0)/µ).

Proof. This is elementary. �

It is well known that the IBD(ν, λ, µ) process, when µ > λ, has equilibrium distribution as
negative binomial which is a gamma mixture of Poisson distributions. This gamma distribution
is the equilibrium distribution of the corresponding Feller diffusion, divided by µ, which is
taken as the intensity of the Cox process. Now we generalize this result to the non-stable
situation with immigration rate as an a.s. continuous non-negative function of time t. The
conclusion below is needed in the following developments.

Lemma 4. Let Y (t) be the population process IBD (ν(t), λ, µ) and let Z(t) be the generalized
Feller diffusion characterized by the stochastic differential equation

dZ(t) = p
√

Z(t) dB(t) + (qZ(t) + r) dt (3.6)

with p2 = 2λµ, q = λ − µ, r = µν(t). If Z(t)/µ and Y (t) are compatible at time
t = 0 then they are compatible for all t > 0.

Proof. Consider the population process. Let pi(t) = prob(Y (t) = i). The forward equations
are

p′
i(t) = −[(λ + µ)i + ν]pi(t) + [(i − 1)λ + ν]pi−1(t) + µ(i + 1)pi+1(t). (3.7)

Let mY(t) = G(u, t) =∑∞
i=0 pi(t)u

i , then we have

∂G

∂u
=

∞∑
i=1

ipi(t)u
i−1

∂G

∂t
= −(λ + µ)u

∂G

∂u
− νG + λu2 ∂G

∂u
+ νuG + µ

∂G

∂u
(3.8)

= ν(u − 1)G + [µ − (λ + µ)u + λu2]
∂G

∂u
.
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Hence
∂G

∂t
= [λu − µ][u − 1]

∂G

∂u
+ ν(u − 1)G (3.9)

where ν = ν(t) is the time-dependent immigration rate.
For the diffusion Z(t), writing X(t) = Z(t)/µ, we have

dX(t) = a
√

X(t) dB(t) + (bX(t) + c) dt (3.10)

where a2 = 2λ, b = q = λ − µ and c = ν(t).
The corresponding forward equation is

∂p

∂t
= 1

2

∂

∂y2
[a2yp] − ∂

∂y
[(by + c)p]. (3.11)

Consider the moment generating function

MX(t) = H(t, u) =
∫ ∞

0
p(t, y) euy dy (3.12)

we have
∂H

∂t
=
∫ ∞

0

∂p

∂t
euy dy

= 1

2
a2
∫ ∞

0
y euy ∂2p

∂y2
dy +

∫ ∞

0
(a2 − by + c)

∂p

∂y
euy dy − bH.

And since ∫ ∞

0
y euy ∂2p

∂y2
dy = −

∫ ∞

0

∂p

∂y
[1 + uy] euy dy

=
∫ ∞

0
euy[u + u(1 + uy)]p dy

= 2u

∫ ∞

0
p euy dy + u2

∫ ∞

0
yp euy dy

= 2uH + u2 ∂H

∂u∫ ∞

0
(a2 − by + c)

∂p

∂y
euy dy = (a2 − by + c) euyp|∞y=0

−
∫ ∞

0
p euy[−b + u(a2 + c − by)] dy

= (b − (a2 + c)u)H + bu
∂H

∂u

eventually

∂H

∂t
= u[λu + (λ − µ)]

∂H

∂u
+ νuH. (3.13)

By comparing this equation with the forward equation for the generating function mY(t),
we conclude that if H(t, u) = G(t, u + 1) at time t = 0 then the relationship holds true for all
t > 0. The lemma follows.

Recall that for the equivalence result to hold we require that Y (0) and Z(0)/µ are
compatible. The preceding lemma shows that if the processes are compatible at the beginning
of some period of time they are compatible at the end. At this time, it is then possible to alter
the parameter λ to another constant and proceed with another period of equivalence which also
preserves compatibility, and so on. It follows that the parameter λ may also vary with time,
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η 2

A population process (IBD).

.Z2 Z1The r term of the infinitesimal mean of is defined as

Z1 Z2

Z d B + ( q Z + r ) d t

The emigration or death process of a population process;

The Cox process with diffusion intensity;

The emigration process from one population to another;

The immigrations of the population process is a diffusion driven Cox process;

A  diffusion satisfying : d Z = p 

Figure 3. Key to symbols used in diagrams of stochastic systems.

without affecting the equivalence. This could be realized by the standard limit procedure of
approximating the a.s. continuous function by step functions. Hence we have the following
more general theorem. �

Lemma 5. Lemma 4 remains true if the rates of immigration and birth are a.s. continuous
positive functions of time t, which could be the sample paths of independent Markov processes.

3.2. Linear chains of populations

Lemma 5 is concerned with inhomogeneous populations and enables us to investigate more
general population systems. Let us start from a simple one.

For given positive numbers η1, η2, . . . , ηk and functions λj (t) � 0, j = 1, . . . , k with
ηj > λj (t), we define a sequence of birth and death processes4 Y1j (t) = IBD(I1j (t), λj (t), ηj ),
j = 1, . . . , k, where I10(t) = ν(t), I1j (t) = ηj−1Y1(j−1), for j = 2, . . . , k. Hence the decrease
epochs of Y1(j−1)(t) actually mark the emigration from Y1(j−1)(t) to Y1j (t). What we observe
is the outcome (the death sequence) D1(t) from Y1k(t). Denote the defined hierarchical
population as S1 = {Y1i , i = 1, . . . , k}.

We define the system of interacting diffusions Sk = {Z1, . . . , Zk} by

dZi = pi

√
Zi dB(t) + (qiZi + ri) dt i = 1, . . . , k (3.14)

where p2
i = 2λi(t)ηi , qi = (λi(t) − ηi), rki = ηiZi−1. The process Z0(t) is introduced for

notational convenience and equals ν(t) for all t > 0. Let Ck(t) be the Poisson process with
intensity Zk(t).

To carry out a complete comparison between the death sequence D1(t) and the Cox
process Ck(t), in fact we introduce an array of birth and death processes and Cox processes
(see figures 3 and 4). The ith system Si consists of k − i + 1 population processes Yii , . . . , Yik ,
linked in a way similar to S1. More exactly the population Yij is an immigration, birth,
emigration (death) process IBD(Iij , λj , ηj ) where ηj > λj , and Iij = ηj−1 ∗ Yi(j−1) for
j = i + 1, . . . , k. The immigration process for Yij coincides with the emigration process from
Yi(j−1) for j = i + 1, . . . , k. Furthermore the immigration into Yii is a Poisson process with

4 We use the convention that Yi(j) = Yij .
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Figure 4. Linearly connected stochastic systems (see context for definition).

intensity Zi−1. Finally, we denote by Di(t) the emigration process (death sequence) in the
last population of the ith system.

For reasons of brevity, we introduce some symbols to represent the complicated systems
we consider. The basic symbols are shown in figure 3.

Figure 4 illustrates the interacting diffusion processes and population processes defined
above. Then we have the following theorem.

Theorem 3. The point processes (D1,D2, . . . ,Dk−1, Ck) constructed as in figure 4 are
stochastically equivalent to each other, provided Zj(0)/ηj and Yij (0) are compatible for all
j = 1, . . . , k, i = 1, . . . , k.

Proof. The proof follows from the theorems in the previous section by induction. �

3.3. Simultaneous death sequences and Cox processes

In this section, we consider system Si , i = 1, . . . , k as defined above but it allows both death
and emigration at the intermediate steps (see figure 5). We first define Cox processes driven
by

dZi = pi

√
Zi dBi + (qiZi + ri) dt (3.15)

where

p2
i = 2λi(t)(µi + ηi) qi = λi(t) − (µi + ηi) (3.16)

r1 = (µ1 + η1)ν(t) (3.17)

ri = (µi + ηi)Zk,i−1ηi−1/(µi−1 + ηi−1) i = 2, 3, . . . , k. (3.18)

For each diffusion, Ci is defined to be a Poisson process with rate µiZi/(µi + ηi) for
i = 1, . . . , k.
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Figure 6. The one-direction system for k = 2.

Let us now introduce the splitting between the emigration and death for a population
process Yij (t) or a Cox process Zi,j+1(t) to another population process Yi,j+1(t). We only
introduce the emigration and death for Y11 and Y12 or for Z21 and Y22. The general situation
is similar. A decrease in Y11 is generated with a rate (η1 + µ1)Y11, and then taken as a death
event in D11 or an emigration event in D∗

11 with probability ratio µ1 : η1. This is shown in
figures 7.

For the death and emigration from a Cox process to a birth and death process, as shown
in figure 7, C11 and C∗

11 are independently conditioned on Z1 and are taken as two conditional
independent Poisson processes with intensities µ1Z1/(µ1+η1) and η1Z1/(µ1+η1) respectively.

Theorem 4. For the stochastic systems shown in figure 5, the point processes satisfy

(D11,D12,D13, . . . ,D1k) ∼ (C21,D22,D23, . . . ,D2k) ∼ · · · ∼ (Ck1, Ck2, . . . , Ckk)

provided that the initial conditions are compatible, where ∼ means equivalent in distribution.

Proof. We need only prove the claim for the case k = 2. In the case k = 2 the systems have
the form shown in figure 6.

It is straightforward to see that (D11,D12) and (C21,D22) are equivalent. From the
superposition property of Poisson processes, C21 and C∗

21 (see figure 7) are independently
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Figure 8. Bi-directional immigration–emigration systems.

conditioned on Z21. Also C31, C32 in the diffusion system are conditionally independent of
the same parameters. Hence

(D11,D12) ∼ (C21,D22) ∼ (C31, C32)

which completes our proof. �

We now complete our discussions on systems with one-direction interactions. It is certainly
more interesting to take into account the case of mutual interactions, which is the case of the
next subsection.

3.4. Population networks and interacting Feller diffusions

A very natural conjecture is that the theorems concerning equivalence in previous subsections
should hold true for population systems where there are immigrations to and from populations
as shown in figure 8.

In other words, for each i = 1, 2, the process Yi is IBDE(Ii , λi, µi, ηi) with an
immigration process consisting of new arrivals at rate νi together with emigrants from the
other population process. For example, I1 = ν1 + Y2η2. We are interested in the death
sequences D1 and D2 of the two populations.

The diffusion system corresponds to stochastic differential equations

dZ1 = p1

√
Z1 dB1 + (q1Z1 + r1) dt (3.19)

dZ2 = p2

√
Z2 dB2 + (q2Z2 + r2) dt (3.20)

where

p2
1 = 2λ1(µ1 + η1) q1 = λ1 − (µ1 + η1)

r1 = (µ1 + η1)(ν1 + Z2η2/(µ2 + η2))

p2
2 = 2λ2(µ2 + η2) q2 = λ2 − (µ2 + η2)

r2 = (µ2 + η2)(ν2 + Z1η1/(µ1 + η1)).
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We are interested in the coupled Cox processes C1, C2 given by Poisson processes with
rates Zi(t)µi/(µi + ηi) for i = 1, 2. The interaction between Z1 and Z2 is linear, i.e.

dZ1 = p1

√
Z1 dB1 + [q1Z1 + (µ1 + η1)(ν1 + Z2η2/(µ2 + η2))] dt

= p1

√
Z1 dB1 + [−k1Z1 + k2Z2 + k3] dt

where k1 > 0, k2 > 0 are constants. Hence the interaction between Z1 and Z2 is scaled
diffusive, the most common interaction and extensively studied in the literature.

Theorem 5. For the systems described above, with compatible initial distributions, we have
(D1,D2) ∼ (C1, C2), provided that λ1(t) = λ1 (constant) and λ2(t) = λ2 (constant).

Proof. One approach to this problem is to define a bivariate probability generating functional
for the output processes. Suppose that ξ and ζ are in V then the bivariate pgf of D1,D2 is
given by

G(ξ, ζ ) = E


∏

si∈D1

∏
tj ∈D2

ξ(si)ζ(tj )


 = exp

[∫ ∞

0
log ξ(u)D1(du) +

∫ ∞

0
log ζ(u)D2(du)

]
.

As in the single population case, we start by considering the conditional pgfs when there
is no immigration from outside the system. We define

fi(t) = E
{

exp

[∫ ∞

0
log ξ(t + s)D1(ds) +

∫ ∞

0
log ζ(t + s)D2(ds)

] ∣∣∣∣Yi(0) = 1

}
for i = 1, 2.

As before, f1, f2 satisfy Ricatti equations

0 = f ′
1 − (µ1 + λ1 + η1)f1 + λ1f

2
1 + µ1ξ + η1f2 (3.21)

0 = f ′
2 − (µ2 + λ2 + η2)f2 + λ2f

2
2 + µ2ζ + η2f1 (3.22)

and the joint pgf of D1,D2 conditional on Y1(0) = y1 and Y2(0) = y2 can be written as

G(ξ, ζ |y1, y2) =
2∏

i=1

{
fi(0)yi exp

[∫ ∞

0
νi(t)(fi(t) − 1) dt

]}
.

For the diffusion system, we have the martingale M(t) given by (ξ1 = ξ , ξ2 = ζ )

log M(t) =
2∑

i=1

− µi

µi + ηi

∫ t

0
(1 − ξi)Zi du +

Zi

µi + ηi

(fi − 1) −
∫ t

0
νi(fi − 1) du

so that by the arguments used for the one population case, we obtain the joint pgf of C1, C2

given Z1 = z1 and Z2 = z2 as

H(ξ, ζ |z1, z2) =
2∏

i=1

{
exp

[
zi

µi + ηi

(fi(0) − 1) +
∫ ∞

0
νi(fi(u) − 1) du)

]}
.

Using the usual compatibility conditions for the initial conditions G and H equality of the
pgfs follows and the theorem is proved. �

Note that in the above proof we have used the assumption that the birth rates are constant,
because only then do we have the neat form of the pfgs. But such an assumption is not
necessary, and a more heuristic proof is given below without referring to the pgf explicitly.
The proof covers the case with inhomogeneous birth rates.
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A heuristic proof. Since each individual behaves independently, according to the possible
path of each individual in the population, the population system can be split into the system
shown in figure 9, where D1 =∑∞

i=1 Pi and D2 =∑∞
i=1 Qi.

Corresponding to this system we have a diffusion system as shown in figure 10.
From previous theorems, we know that

(P1,Q2, P3,Q4, . . .) ∼ (L1,M2, L3,M4, . . .)

and they are independent of

(Q1, P2,Q3, P4, . . .) ∼ (M1, L2,M3, L4, . . .).

Hence

D1 =
∞∑
i=1

Pi ∼
∞∑
i=1

Li = C ′
1 D2 =

∞∑
i=1

Qi ∼
∞∑
i=1

Mi = C ′
2 (D1,D2) ∼ (C ′

1, C
′
2).

The Gi,Hi , i = 1, 2, . . . satisfy the stochastic differential equations

dG1 = p1

√
G1 dB1 + [q1G1 + (µ1 + η1)ν1] dt

dG2 = p1

√
G2 dB2 +

[
q1G2 + (µ1 + η1)H1

η2

µ2 + η2

]
dt

dG3 = p1

√
G3 dB3 +

[
q1G3 + (µ1 + η1)H2

η2

µ2 + η2

]
dt

. . . . . .

dH1 = p2

√
H1 dB ′

1 + [q2H1 + (µ2 + η2)ν2] dt
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Figure 11. The multi-population net and the corresponding diffusion system.

dH2 = p2

√
H2 dB ′

2 +

[
q2H2 + (µ2 + η2)G1

η1

µ1 + η1

]
dt

dH3 = p2

√
H3 dB ′

3 +

[
q2H3 + (µ2 + η2)G2

η1

µ1 + η1

]
dt

. . . . . . .

Summing these diffusions and using∑
i

σi dBi =
√∑

i

σ 2
i dB (3.23)

(see the remark following the proof) we have∑
dGi = p1

(∑√
Gi dBi

)
+

[
q1

∑
Gi + (µ1 + η1)

(
ν1 +

η2

µ2 + η2

∑
Hi

)]
dt

= p1

√∑
Gi dB̃ +

[
q1

∑
Gi + (µ1 + η1)

(
ν1 +

η2

µ2 + η2

∑
Hi

)]
dt

∑
dHi = p2

(∑√
Hi dB ′

i

)
+

[
q1

∑
Hi + (µ2 + η2)

(
ν2 +

η1

µ1 + η1

∑
Gi

)]
dt

= p2

√∑
Hi dB̃ ′ +

[
q2

∑
Hi + (µ2 + η2)

(
ν2 +

η1

µ1 + η1

∑
Gi

)]
dt

which means (∑
Gi,
∑

Hi

)
dist= (Z1, Z2).

Hence

(C ′
1, C

′
2) ∼ (C1, C2)

which completes the proof. �

Remark. Note that we have used the fact that the summation of independent generalized
Feller diffusions is again a generalized Feller diffusion. This claim is not generally true for
other diffusions. The reason we could perform such an operation ‘legally’ is the linearity of
the infinitesimal parameters.

The generalization of the above results to more complex networks such as figure 11 is
straightforward.
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In figure 11 the lines connecting populations represent that populations interact by
immigration in one direction or two directions. Similar explanations apply to the lines
connecting Feller diffusions. We suppose that Di is the death sequence of Yi , Ci is the Cox
process with intensity ∝ Zi . Equivalent relationships between two systems can be established
accordingly.

4. Conclusions and discussions

We have explored the relationships between point processes generated by birth and death
processes and Feller diffusion processes. Although the birth and death process and the Feller
process seem quite different, surprisingly we have asserted that the generated point processes
(the death sequence from the birth and death process and the Cox process from the Feller
diffusion) are equivalent. The conclusion is not only true for the processes generated by a
single birth and death process and single Feller process, but also the equivalent relationship
remains valid for interacting populations and interacting Feller processes. The relationship
provides us with a valuable tool to carry out further statistical inferences on various parameters
of the model.

Here are some notes on technical aspects:

• In all our proofs, the rates of death and emigration have to be constants as the necessity
of everlasting compatibility.

• The pgf is a powerful tool to investigate point processes, as demonstrated in this paper.
With respect to point processes, they are analogues of moment generating functions or
moments of random variables. In appendices A and B, some further applications of pgf
are included.

• The heuristic reasoning concerning interacting diffusions is transparent because of the
linearity of the infinitesimal coefficients of Feller diffusions, even for the inhomogeneous
situations. Based upon this, we doubt whether there are other Cox processes driven by
diffusions which can be analysed similarly.
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Appendix A. Increasing time sequence

We have found the pgf for death sequences of a birth and death process. What is the pgf
for an increasing time sequence of a birth and death process? And furthermore, what is the
relationship between the increasing time sequence and the death sequence? We answer these
questions here.

Theorem 6. For the IBD (ν, λ, µ) process, the pgf of the times of population increase is given
by

Gk(ξ) =
[

µ

µ + λ(1 − f (0))

]k+δ

exp

{
ν

∫ ∞

0
(f (t) − 1) dt

}
(A.1)

where k is the initial population size and the function f was defined in (2.4).
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Proof. We first consider the pgf of the increases in the simple birth–death process BD(λ, µ)

starting from a single individual. Let

g(t)
def= E

(∏
i

ξ(t + si)|Y (0) = 1

)

where si is the ith birth instance.
The time of the first event (birth or death) after time 0 has exponential density with

parameter (λ + µ). The first event is birth or death with probability ratio λ :µ. If it is a death
the process dies out, if it is a birth the process splits into two i.i.d. point processes starting at
that time instance. Hence we have the following,

g(t) =
∫ ∞

0
e−(λ+µ)s(λg2(t + s)ξ(t + s) + µ) ds

=
∫ ∞

t

e(λ+µ)t e−(λ+µ)s(λg2(s)ξ(s) + µ) ds

so that

g′ − (λ + µ)g + (λg2ξ + µ) = 0 (A.2)

with the boundary condition g(t) → 1 as t → ∞. It is therefore straightforward to verify that

g(t) = 1

1 + λ(1 − f (t))/µ
(A.3)

with f as defined in (2.4).
Now consider the conditional pgf of the increase times of the IBD(ν, λ, µ) process starting

from zero population size, that is

E

(∏
i

ξ(si)|Y (0) = 0

)

where si is the ith increase. Since the population process is strongly Markovian and all the
immigration times Tj , j = 1, 2, . . . are stopping times, we have

E

[∏
i

ξ(si)|Y (0) = 0

]
= E


∏

j

g(Tj )ξ(Tj )




= exp

{
−
∫ ∞

0
(1 − gξ)ν dt

}
.

Thus conditioning on Y (0) = k

E

(∏
i

ξ(si)|Y (0) = k

)
= gk

0 exp

{
−
∫ ∞

0
(1 − gξ)ν dt

}
. (A.4)

From (A.2) we have

1 − gξ = 1

λ

[
g′

g
− µ

(
1 − 1

g

)]
.

so that

−
∫ ∞

0
(1 − gξ)ν dt = ν

λ
log g0 + µδ

∫ ∞

0

(
1 − 1

g

)
dt .

Finally, from (A.4) and (A.3) we have

Gk(ξ) =
[

µ

µ + λ(1 − f (0))

]k+δ

exp

{
ν

∫ ∞

0
(f (t) − 1) dt

}
(A.5)

which completes the proof. �
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Figure B1. Well-like 0–1 step function.

Taking the expectation of the initial population from the equilibrium distribution
NegBin(c, δ), the theorem leads to the same pgf as that of the death sequences.

However, the pgf (A.5) is of particular interest in itself because of the following corollary.

Corollary 3. The increase time sequence of the IBD (ν, λ, µ) process with initial population
size k is equivalent to the death time sequence of the IBD (ν, λ, µ) process with initial
population sampling from NegBin(λ/(λ + µ), k + ν/λ).

We have demonstrated a number of equivalences between various point processes. But it is
important to note that these equivalence claims are concerned only with the overall behaviour.
The characteristics of the conditional death process would not necessarily have analogues for
the increase process. For example, we have shown that when the initial population Y (0) is
sampled from Poisson(Z(0)/µ) or when Y (0) = Z(0) = 0, the death process is equivalent to
the Cox process. But this is not true for the increase process. When conditioned on Y (0) = 0,
the first increase is characterized by the immigration process Poisson(ν), while the first death
is only partially dependent on it.

Appendix B. Calculating coincidence density from pgf

In [3] we gave explicit formulae for the coincidence densities of the Poisson process with Feller
intensity (2.14). Now we will explore the feasibility of calculating coincidence densities from
the pgf. We will need the following lemma.

Lemma 6. When considering the Ricatti equation

f ′ + af + bf 2 = c (B.1)

where a, b, and c are continuous functions, the transformation

f = f1 + 1/v (B.2)

where f1 is a particular solution, leads to a linear differential equation for v.

We have shown that the conditional pgf f (t) satisfies the simple Ricatti equation

f ′ − (λ + µ)f + λf 2 = −µξ(t) (B.3)

where ξ(t) ∈ V . In order to obtain coincidence densities, we will have to consider the well-like
functions shown in figure B1 for which there are two types of interval to consider, those in
which ξ(t) = 0 and those in which ξ(t) = 1.

Following the classical procedures of solving the Ricatti equations and together with
lemma 6 we have the following solutions.
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Figure B2. The well-like step function for the mean intensity.

Case (i). Suppose that ξ(t) = 0 for t1 < t < t0 then equation (B.3) has the solution

f (t) = f (t0)(λ + µ)

f (t0)λ + (λ + µ − λf (t0)) e−(λ+µ)(t−t0))
. (B.4)

Case (ii). Similarly when ξ(t) = 1 for t1 < t < t0, we have

f (t) = µ(1 − f (t0)) + (λf (t0) − µ) e−(µ−λ)(t−t0)

λ(1 − f (t0)) + (λf (t0) − µ) e−(µ−λ)(t−t0)
. (B.5)

To demonstrate how to obtain the coincidence densities from the pgf, we will derive the
first-order density h1 for the stationary case, which we have already shown to be µν/(µ − λ)

in [3].
Let ξ(t) ∈ G be the well-like function as depicted in figure B2, i.e.

ξ(t) = 1 − I(t ∈ (t1, t0)).

Let Nτ be the random number of points in the interval (t1, t0), where τ = t0 − t1, then

G(ξ) = 1 − P(Nτ > 0) = 1 − P(Nτ = 1) + o(τ)

since P(Nτ > 1) = o(τ). The first-order density is therefore given by

h1(t1) = lim
τ→0

1 − G(ξ)

τ
. (B.6)

Since

G(ξ) =
[

µ − λ

µ − λf (0)

]δ

exp

{
−ν

∫ ∞

0
(1 − f (t)) dt

}
(B.7)

we now consider the approximation of f (t) when τ is small. Writing ε(t) for 1 − f (t), we
immediately have ε(t) = 0 for t � t0. From (B.4) we have

ε(t) = µ(t0 − t) + o(τ) t1 < τ < t0

so that ε(t1) = µτ + o(τ).
From (B.5), substituting t1 for t0 and using the fact that ε(t1) is small, we have

ε(t) = e−(µ−λ)(t1−t)ε(t1) + o(τ) for 0 < t < t1.

It follows that ∫ ∞

0
(1 − f (t)) dt =

∫ t0

0
ε(x) dx =

∫ t1

0
ε(x) dx +

∫ t0

t1

ε(x) dx

= µτ

µ − λ
(1 − e−(µ−λ)t1) + o(τ). (B.8)
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Figure B3. Well-like functions for second-order coincidence densities.

Simple algebra leads us to[
µ − λ

µ − λf (0)

]δ

=
[

µ − λ

µ − λ(1 − e−(µ−λ)t1µτ + o(τ))

]δ

= 1 − µν

µ − λ
e−(µ−λ)t1 + o(τ)

exp

{
−ν

∫ ∞

0
(1 − f (t)) dt

}
= exp

{
− µν

µ − λ
(1 − e−(µ−λ)t1)τ

}
+ o(τ)

= 1 − µν

µ − λ
(1 − e−(µ−λ)t1)τ + o(τ)

(B.9)

Thus

G(ξ) = 1 − µν

µ − λ
+ o(τ)

1 − G(ξ) = µν

µ − λ
+ o(τ)

(B.10)

h1(t1) = µν

µ − λ
. (B.11)

Next, we consider the well-like functions ξ1 and ξ2 as in figure B3.
Using similar arguments as above,we can calculate the second-order coincidence densities

by considering the corresponding pgf of ξ1, ξ2 and ξ1ξ2. And from the definition of coincidence
densities

h2(t1, t2) = lim
τ→0

1

τ 2
P[N(t1, t1 + τ )N(t2, t2 + τ ) > 0]

= lim
τ→0

1

τ 2
[1 − G(ξ1) − G(ξ2) + G(ξ1ξ2)] (B.12)

we can show that G(ξ1), G(ξ2) and G(ξ1ξ2) can be calculated explicitly. Hence, in principle,
we could obtain all coincidence densities by solving the Ricatti equations and calculating the
pgfs of well-like functions.
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